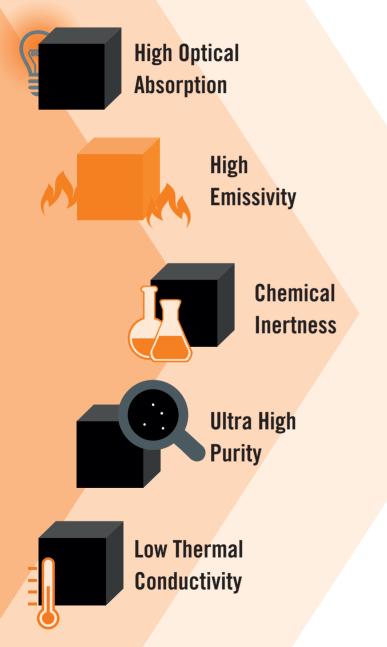

Complete THERMAL MANAGEMENT

CONTACT

Germany Heraeus Quarzglas GmbH & Co. KG Reinhard-Heraeus-Ring 29 63801 Kleinostheim, Germany hbq@heraeus.com www.herae.us/hbq



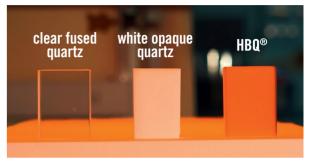
Wissenschaftliche Apparaturen und Industrieanlagen AG Bruggacherstrasse 24 CH-8117 Fällanden Tel. 044 317 57 77 Fax 044 317 57 77 http://www.wisag.ch e-mail: info@wisag.ch

Heraeus Black Quartz HBQ® a revolutionary hybrid material

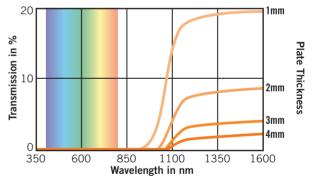
Unique MATERIAL PROPERTIES

High CHEMICAL INERTNESS

Over 95% absorption is achieved in a wide range of wavelengths from UV through VIS to MWIR in as little as 3mm of thickness. Over 80% absorption is achieved already at a thickness of just 1mm.


Values for emissivity close to a black body emitter are achieved at elevated temperatures. Over a wide range of wavelength the emissivity is between 80% and 90%. Between 2.6µm and 2.7µm reaching 95%. HBQ[®] represents a new option as black body emitter.

Analogous to clear fused quartz material HBQ[®] is inert to most chemical acids and solvents. For example no reaction is seen with HCl, HNO₃ or gases like Cl₂, H₂ or O₂. In almost any atmosphere HBQ[®] can be used at temperatures up to 1300°C safely and reliably.


The total level of impurities in HBQ[®] is <50 ppm, resulting in a bulk purity of >99.995%. Even for the most sensitive leading-edge semiconductor applications HBQ[®] is a qualified and viable material solution. HBQ[®] is free of carbon and problem metals like Iron, Titanium, Tungsten, Chrome or Nickel.

Despite the high emissivity, HBQ[®] offers a very low thermal conductivity, defined by the SiO₂ nature of the material. The thermal conductivity is as low as 1.5 W/mK. This offers unique application benefits, e.g. in semiconductor process chambers, adding a degree of freedom in thermal management, where heat dissipation is an issue.

Emissivity Comparison at 1000°C

Transmission of HBQ® Plates from UV to IR

HBQ®100 – Physical Properties	
Density g/cm ³	2.19 – 2.20
Porosity	< 0.5%
Pore size	< 10 µm
CTE (0900°C)	0.57 × 10 ⁻⁶
Max. Working Temp – continuous	1120°C
Max. Working Temp – short term	1300°C
Specific Heat [J/(gK)], RT	0.75
Heat conductivity [W/(mK)], RT	1.49
Dielectric constant (ɛ), RT, 13.56 MHz	3.82
Dielectric loss angle (tan δ), RT, 13.56 MHz	90 x 10 ⁻⁴